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Binary Message Passing (BMP) for LDPC Codes

•  Gallager, “Low density parity check codes,” IRE Trans. IT, 1962

•  Kou, Lin, Fossorier, LDPC codes based on finite geometries, IEEE Trans. IT, 2001

•  Zhang, Fossorier, Modified bit-flipping decoding, IEEE Comm. Lett., 2004

•  Miladinovic, Fossorier, Improved bit-flipping decoding, IEEE Trans. IT, 2005

•  Jiang, Zhao, Shi, Chen, Improved bit flipping decoding, IEEE Comm. Lett., 2005

•  Ardakani, Kschischang, Properties of binary message-passing, IEEE Trans. IT, 2005

•  Sankaranarayanan et al., Failures of the Gallager B decoder, ISIT 2006

•  Reliability-based majority-logic decoding for LDPC codes, IEEE Trans. Comm., 2009

•  Planjery, Declercq, Danjean, Vasic, Finite alphabet iterative decoders, 2013-

•  Many other papers

Here Review and Expand on:
•  Lechner, Pedersen, Kramer, Analysis and design of binary message passing 

decoders, IEEE Trans. Comm., 2012 (and ISIT 2007)
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I. Low-Density Parity-Check (LDPC) Codes

Tanner Graph Representation 
of Parity-Check Constraints
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§  A binary linear block code is the set of 
binary (row) vectors, or codewords, c, 
satisfying, e.g.,

 
 
 
 
 
 
 
 
 
 
 
 
where H is a (n-k) x n parity-check-matrix. 
Rate is R=1-rank(H)/n (example: R=5/8). 
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Message Passing

4Log-likelihood ratios

§  Code is low-density if each row and 
column of HT has “few” 1’s

§  Irregular LDPC code: variable number 
of 1’s in every column/row

§  Decoding: use message passing on 
the graph

§  Messages may be cond. probabilities

 
 
or log-likelihood ratios (L-values) 
 
 
 
 
or, in practice, quantized L-values

€ 

Pr c1 = 0 y( )

€ 

L1 = log
Pr c1 = 0 y( )
Pr c1 =1 y( )
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LDPC code decoder iterations (turbo processing):
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a-priori 
information

extrinsic 
information

decoder computations 
performed here

II. Iterative Decoding
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III. Demodulation and Decoding

§  L-values are real but must be quantized, see figure below

1)  Demodulator: can put out soft decisions (>log2(M) bits/symbol) 
or hard decisions (=log2(M) bits/symbol)

2)  Decoder iterations: B-bit message passing: 
binary message passing (BMP, B=1)  
ternary message passing (TMP, B≈2)

§  Motivation: high-speed devices (>100 Gb/s) need simplifications
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§  BMP/TMP: natural approaches are as follows:

1)  Every edge bit represents a hard decision on an extrinsic L-value

2)  Variable nodes convert apriori bits to L-values, add L-values, and make 
binary (hard) or ternary decisions on output L-values

3)  Check nodes perform (extrinsic) XORs for binary message passing, and 
(extrinsic) XORs and erasures for ternary message passing 

§  Analysis: use distribution evolution (DE) to track extrinsic probabilities. 
BMP: track error probabilities; TMP: also track erasures
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ϵev 

ϵav 

ϵec 

Lch Check Node 
Transfer 
Function: 
ϵec(ϵac) 

 

N.B. ϵec(ϵac) depends on dc 
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§  Check node (degree dc) and binary messages: 
 
 

§  Variable node (degree dv): suppose xj=±1 (BPSK)
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€ 

Lav,i = ai log
1−εav
εav

, ai = ±1, but what is εav ?

!  

Lch depends on channel quantization Two design issues

  

!  

Lev, j = Lch + Lav,i
i=1;i" j

d v

# j =1, 2,É , dv

€ 

εev =
1
dv
Pr sgn Lev, j( ) ≠ x j[ ]

j=1

dv

∑

BMP Distribution Evolution
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Issue 1: Variable Node Processing

§  Processing depends on ϵav which
§  Varies from iteration to iteration

§  Is unknown, unless the codes have infinite length in which case ϵav  
can be computed from EXIT chart (see below)

§  Two other approaches:
§  Optimize “choice” of ϵav offline by numerical simulation

§  Estimate ϵav online based on the number of unsatisfied checks

§  1st approach is complex, but likely very good. This variant 
was used to design certain deployed LDPC codes

§  2nd approach is used here
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Issue 2: Channel Outputs

§  Consider an AWGN channel, xj=±1, noise variance

§  Let Dch=|Lch| … called the reliability of the L-value

§  For soft decisions: 

§  For hard decisions get a binary symmetric channel (BSC) with crossover 
probability ϵch (0 ≤ ϵch ≤ 0.5)

§  For b-bit quantization: use mixture of b hard-decision channel 
reliabilities, e.g., 2-bit quantization with a binary symmetric quaternary 
output (BSQC) channnel
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€ 

Dch = log
1−εch
εch

, where εch =Q 1/σ n( )

€ 

σn
2

€ 

Dch =
2
σ n
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Transfer Functions for (4,6)-Regular Code
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Channel: σn=0.67
x-axis to y-axis: 
variable nodes
y-axis to x-axis: 
check nodes

Iac=1-h(ϵac) where h(x) is the 
binary entropy function: 
h(x) = -xlog2x-(1-x)log2(1-x)
Example: h(0.11)=0.5
Similar for Iec, Iav, Iev

Comments:
- BSC quantization same as 
Gallager B algorithm
-  BSQC quantization 
thresholds at 0 and ±1.9 
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IV. Optimization: Irregular LDPC Codes

§  Each node’s ϵev depends on dv: write as ϵev(ϵav,dv). Now use different 
degrees to shape avg. variable node curve:

with λi=fraction of edges connected to var. nodes of degree i

§  Can similarly shape the check node function ϵec(ϵac)

§  Degree distribution {λi} design: use EXIT chart

§  ϵev(ϵav) curve should lie above ϵec(ϵac) curve for convergence (and n=∞)

§  L-value messages: Matching EXIT curves maximizes rate.

§  BMP: new issues vs. L-value messages
§  Stability (decoder convergence when ϵav or ϵac are small)

§  Cycles related to “absorbing sets” cause decoder to get stuck

§  Approach: build optimization & remedies into a linear program
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εev εav( ) = λi εev εav,i( )
i
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Rate, Stability, Cycles

§  Design Rate:

§  Stability: satisfied for binary message passing and hard or soft channel 
messages if and only if (try λ2 = 1)

§  Cycles:

§  Structure on right causes 
decoding failure if all channel 
messages in error, and if all 
other incoming messages correct

§  Obvious idea: avoid cycles of 
degree 2 or 3 variable nodes 
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Cycles and Linear Program

§  Result: a Tanner graph with no cycles having degree 2 and 3 variable 
nodes exists if and only if (try λ3 = 1)

§  Linear Program: λ = {λi} is variable node degree distribution 
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BMP Thresholds
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Binary message passing 
& variable node degree 
distribution optimized 
using linear program 

Capacities 
(soft messages) 

Comments:
- x-axis is Es/N0 

-  hard decision 
(BSC) capacity 
≈2dB below AWGN 
capacity at low rate
-   gap to capacity 
decreases as rate 
increases, for hard 
decisions and BMP

-  Conclusion: high 
rate is good for BMP
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Performance: Rate 1/2, BMP
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Comments:
-  x-axis is Eb/N0 

-  PEG interleavers 
automatically avoid 
undesirable cycles

-  n = 10,000

-  2-bit quant. gains 
≈1dB over Gallager 
B and loses ≈0.5dB 
as compared to soft 
outputs

(3,6) regular code, BMP, soft 
channel outputs: error floor ! 

Optimized Codes 

Hard-Decision Cap: 1.8 dB 
Soft-Decision Cap: 0.2 dB 
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Performance: Rate 15/16, BMP
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regular LDPC code for optical 
see ITU-T G.975.1 2004 

Hard-Decision Capacity: 5.0 dB 
Soft-decision Capacity: 3.9 dB 

Comments:
-  x-axis is Eb/N0 
 
- interleaver taken 
from standard
-  2-bit quant. gains 
≈1dB over Gallager 
B and loses ≈0.2dB 
vs. soft outputs
-  BMP is ≈1.5dB 
from L-value 
message capacity
-  longer & irregular 
codes get closer
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Comments:
-  Figure taken from 
Emna Ben Yacoub’s 
Master Thesis, Oct. 
2018

-  Curves show 
decoding thresholds 
with BMP and TMP 
for optimized
protograph LDPC 
code ensembles

Performance: TMP
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Comments:
-  Figure from E. Ben 
Yacoub et al.’s arxiv 
paper, Sep. 2018

-  Curves show frame 
error rate (FER) of 
AR4JA and optimized 
codes
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For More Details:

G. Lechner, T. Pedersen, and G. Kramer, “Analysis and design of binary 
message passing decoders,” IEEE Trans. Commun., 60(3), 601-607, 2012. 
See also: http://arxiv.org/pdf/1004.4020v1

E. Ben Yacoub, “LDPC Decoding Algorithms Based on Ternary Message 
Passing,” Master’s Thesis, Technical University of Munich, Oct. 2018

E. Ben Yacoub, F. Steiner, B. Matuz, G. Liva, “Protograph-Based LDPC 
Code Design for Ternary Message Passing Decoding,” Sep. 2018 
https://arxiv.org/abs/1809.10910v2

See the Posters!
And the First Talk Tomorrow!
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