The nonlinear noise increases linearly with the transmission distance as:

\[\text{OSNR}^{(p)}_{NL} = \frac{P_m}{B_{ref}(N_{ave} + G_N^{(p)} N_L)} \]

The nonlinear noise power density can be calculated as [3]:

\[G_{NL, intra}^{(p)} = \frac{G_{NL}^2}{X} \left(\sum_{\omega \neq p} \int_{-B_{ref}/2}^{B_{ref}/2} \left| \eta(\Delta \omega_{ppp}) \right|^2 d\Delta \omega_1 d\Delta \omega_2 \right) \]

\[+ 2 \sum_{\omega \neq p} \int_{-B_{ref}/2}^{B_{ref}/2} \left| \eta(\Delta \omega_{ppp}) \right|^2 d\Delta \omega_1 d\Delta \omega_2 \]

The nonlinear noise increases linearly with the transmission distance as:

\[G_{NL, AS}^{(p)} = G_{NL}^{(p)} \cdot N_{sp} \]

We present an extension of the well accepted Nonlinear Gaussian Noise Model [1,2] for multi-mode fibers with Space-Division Multiplexing. We compare the analytical model with numerical simulations and find a good agreement, making the model an easy-to-use tool for the design of future fiber optical transmission systems.

Analytical Modeling

The impact of nonlinear signal distortions can be modeled through an additional noise and included in an nonlinear OSNR for fiber mode \(p \):

\[\text{OSNR}^{(p)}_{NL} = \frac{P_m}{B_{ref}(N_{ave} + G_N^{(p)} N_L)} \]

The nonlinear noise power density can be calculated as [3]:

\[G_{NL, intra}^{(p)} = \frac{G_{NL}^2}{X} \left(\sum_{\omega \neq p} \int_{-B_{ref}/2}^{B_{ref}/2} \left| \eta(\Delta \omega_{ppp}) \right|^2 d\Delta \omega_1 d\Delta \omega_2 \right) \]

\[+ 2 \sum_{\omega \neq p} \int_{-B_{ref}/2}^{B_{ref}/2} \left| \eta(\Delta \omega_{ppp}) \right|^2 d\Delta \omega_1 d\Delta \omega_2 \]

The nonlinear noise increases linearly with the transmission distance as:

\[G_{NL, AS}^{(p)} = G_{NL}^{(p)} \cdot N_{sp} \]

We define a ratio of the nonlinear noise when only considering intramodal distortion and when considering both, intra- and intermodal nonlinear distortion. In the simulation, we assess the nonlinear noise through the variance of the received constellation points.

\[\rho^{(p)} = \frac{G_{NL, intra}^{(p)}}{G_{NL, intra}^{(p)} + G_{NL, inter}^{(p)}} = \frac{G_{NL, intra}^{(p)}}{G_{NL, tot}^{(p)}} \]

System Design

- Modulation Format: QPSK
- Pulse shaping: Root raised cosine filtering
- Roll Off: \(\alpha_{RO} = 0.001 \)
- Symbol Rate: 28.01 GHz
- Number of WDM channels: 9
- Channel spacing: 28.01 GHz
- Total optical Bandwidth: \(B_{opt} \approx 290 \text{GHz} \) per channel
- Span length: 80 km
- Number of Spans: 1 – 25
- Fiber Core Radius: \(a = 9 \mu m \)
- Numerical Aperture: 0.25
- Attenuation: \(a = 0.24 \text{dB/km} \)
- Nonlinear parameter: \(n_2 = 2.6 \cdot 10^{-20} \text{m}^2/\text{W} \)
- Differential Mode Delay \(\Delta t_{DP, f} \):
 - \(\Delta t_{DP, f} \cdot \text{LP}_{01} = \text{LP}_{12a/b} \cdot 0.1 \text{ps/km} \)
 - \(\Delta t_{DP, f} \cdot \text{LP}_{01} = \text{LP}_{12a/b} \cdot 0.3 \text{ps/km} \)
 - Chromatic Dispersion (all modes): 15 ps/nm/km

Validation: Transmission Distance

Validation: Differential Mode Delay

References

3. G. Rademacher et al. “Nonlinear Gaussian Noise Model for Multi-Mode Fibers with Space-Division Multiplexing,”Submitted for publication

Acknowledgment

This work was funded by the German Research Foundation (DFG)