kein Bild

Prof. Dr.-Ing. Norbert Hanik

Technische Universität München

Professur für Leitungsgebundene Übertragungstechnik (Prof. Hanik)

Postadresse

Postal:
Theresienstr. 90
80333 München

Biografie

Norbert Hanik heads the "Wireline Transmission Technology" group at TUM. He received the Dipl.-Ing. degree in Electrical Engineering from the Technische Universität München (TUM) with a thesis on digital spread spectrum systems in 1989. From 1989 to 1995 he was a research associate at the Institute for Communications Engineering, TUM, where he worked in the field of Optical Communications. In 1995 he received the Dr.-Ing. degree with a thesis on non-linear effects in optical transmission.

From 1995 to 2002, Prof. Hanik was with the Technologiezentrum of Deutsche Telekom, heading the research group "System Concepts of Photonic Networks". From January to March 2002 he was a Visiting Professor at the Research Center COM of the Technical University of Denmark, Copenhagen. He has contributed to many Telekom-internal, national and international R&D-projects, both as a scientist and project leader.

As of April 2004, Prof. Hanik holds an Associate Professorship at TUM.  His primary research interests are in the fields of modeling and optimization of optical and copper-based communication systems applying methods of communications engineering, classical and quantum physics, information theory, signal processing, and coding.

Lehre

Abschlussarbeiten

Angebotene Abschlussarbeiten

Laufende Abschlussarbeiten

Bachelorarbeiten

Automatization of a breakout box for the Chinese DC charging standard

Automatization of a breakout box for the Chinese DC charging standard

Beschreibung

Laut chinesischem DC-Ladestandard enthält die DC-Ladeverbindung zusätzlich zu den Hochvolt-Leitungen eine Steckererkennung (CC1 und CC2), 12V Zusatzspannung, einen Schutzleiter und CAN-Leitungen zur Kommunikation zwischen EVSE und EV. Um die Verbindung und Kommunikation zwischen EVSE und EV zu überprüfen und zu variieren wird eine Breakout-Box benötigt, welche in das Kabel zwischen EVSE und EV zwischengeschalten wird. Diese ermöglicht es die CAN-Kommunikation und die Leitungen zu manipulieren. Ziel der Bachelorarbeit ist es eine vorhandene manuelle Breakout-Box zu automatisieren. Die Automatisierung soll die Trennung der CAN-, Zusatzspannungs- und der Leitung der Steckererkennung ermöglichen sowie die automatisierte Messung der Zusatzspannung und Spannung der Steckererkennungsleitungen beinhalten. Die Steuerung soll über einen CAN-Bus erfolgen. Dazu muss ein Multi-Purpose-Modul (MPM) implementiert, die Steuerung über den CAN-Bus definiert und die vorhandene Breakout-Box umgebaut werden. Zusätzlich soll eine vorhandene CANoe-Konfiguration der Breakout-Box um die Automatisierung erweitert werden um anschließend bereits vorhandene manuelle Testfälle zu automatisieren.

Kontakt

P3 systems GmbH

Heilbronner Straße 86

70191 Stuttgart

Germany

konstantin.weber@p3-group.com

+49 151 724 222 46

Betreuer:

Norbert Hanik - Dr. Konstantin Weber (P3 systems GmbH)

Student

Iliana Paspaleva

Forschungspraxis oder MSCE Forschungspraxis

Lifecycle-Management für Komponentenerprobungsfahrzeuge

Lifecycle-Management für Komponentenerprobungsfahrzeuge

Beschreibung

n.n.

Betreuer:

Norbert Hanik - Markus Denes (BMW Group)

Student

Burak Cetinkaya

Preparing a data-path for Optical Downlink

Preparing a data-path for Optical Downlink

Beschreibung

The work is on developing or modifying subsystems from the Osiris4CubeSat project at DLR, which is about developing an optical payload with the primary goal of demonstrating high speed optical downlinks between a CubeSat and the Earth. 

Betreuer:

Ginni Khanna, Norbert Hanik - Anil Morab Vishwanath (DLR)

Student

Lorenzo Castelvero

Ingenieurpraxis

Ingenieurpraxis

Ingenieurpraxis

Stichworte:
Ingenieurpraxis

Kurzbeschreibung:
IP

Beschreibung

IP

Voraussetzungen

IP

Betreuer:

Student

Maximilian zimmermann

Forschung

Modeling, Simulation and Optimization of Optical Communication Systems

Our modern, information-based world would not be conceivable without the
tremendous achievements in optical communications over Single Mode Fibers of the last three decades. Transmission rates over one Single Mode Fiber in the range of Multi-Terabits/s are state of the art, transpacific transmission distances without electronic data regeneration over more than 9000 km have been realized. Nevertheless, the ever increasing demand for bandwidth requires continuing extension of the transmission capacity of optical communication systems.
With this motivation a multitude of research projects are carried out in our group in the fields of:

  • Physical modeling and numerical simulation of optical communication systems
  • Investigation into advanced optical modulation and coding schemes
  • Optimization of the physical link-design including all relevant interacting linear and nonlinear effects
  • Optimization of electronic predistortion and equalization methods
  • Information-theoretical evaluation of the channel-capacity of optical fibers
  • Modeling and optimization of new optical transmission media (multicore fibers, few-mode fibers, hollow-core fibers)

Short reach communications over Polymer Optical Fiber or copper

For inhouse-communication or data-transfer in planes or vehicles, Polymer Optical Fibers are an efficient alternative to copper, or silica fibers. However, the polymer optical channel needs special treatment due to the high amount of modes (more than one million) propagating in the large POF-core. Data transmission over POF is optical, using visible light as data carrier. In contrast to that, traditional copper wires are mainly operated in baseband, or with moderate carrier-frequencies in the MHz-range. It is obvious that channel modeling for these channels differs fundamentally, just as the methods to maximize data throughput and reach.
In this context our group carries our research in the fields of:

  • Modeling and simulation of components and systems
  • Optimization
  • Realization of demonstrators using Field Programmable Gate Arrays (FPGAs)
Power-flow equation for Step-Index POF
Model of single-wire transmission line

Projekte

The predominant part of our research is third-party funded. Our sponsors are, e. g. the German Bundesministerium für Bildung und Forschung (BMBF), the European Union, and industrial partners. You can learn more about ongoing research projects on the web-pages of my co-workers.