Spatial Coupling - Essential Technology for High Throughput Coding?

Laurent Schmalen
Contributions from: Vahid Aref, Sebastian Cammerer†, Fanny Jardel, Kevin Klaiber†, Stephan ten Brink†

†: University of Stuttgart, Institute of Telecommunications (INUE)
2019 Oberpfaffenhofen Workshop on High Throughput Coding (OWHTC)
Outline

1. Spatially coupled (SC) LDPC Codes

2. Non-uniformly coupled SC-LDPC codes

3. Problems with windowed decoding of SC-LDPC codes (and first solutions)

4. Conclusions and outlook
Spatially Coupled LDPC Code Ensemble

Start with LDPC Code

- We start with a regular LDPC code
 - Variable node (code bits) degree d_v
 - Check node (constraints) degree d_c
- Total number of M variable nodes (code bits)
Spatially Coupled LDPC Code Ensemble

Start with LDPC Code

- We start with a regular LDPC code
 - Variable node (code bits) degree d_v
 - Check node (constraints) degree d_c

- Total number of M variable nodes (code bits)

- **Spatially coupled code**: replicate L copies of this code along a new, spatial dimension

- L denotes the *replication factor* of the code
Spatially Coupled LDPC Code Ensemble

L Disjoint LDPC Codes

Spatially Coupled LDPC Code Ensemble

L Disjoint LDPC Codes

Spatial coupling: connect uniformly at random each edge from variable node at SP z to check node at position $\{z, z+1, \ldots, z+w-1\}$

w: coupling factor

Spatially Coupled LDPC Code Ensemble

Spatially Coupled LDPC Code with $w = 2$

Spatial position $z - 1$

Spatial position z

Spatial position $z + 1$

Spatially Coupled LDPC Code Ensemble

Terminated Spatially Coupled LDPC Code with $w = 2$ and $L = 3$

- Two extra check nodes lead to rate loss (negligible if L large enough)
- Check nodes at boundary have lower degree, hence better correction capabilities

Spatially Coupled LDPC Codes are Capacity-Achieving

- Under some conditions, SC-LDPC codes are capacity-achieving [KRU11], in particular, for the decoding threshold on the binary erasure channel (BEC),

 \[
 \lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{\text{BP}}(d_v, d_c, L, W) = \lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{\text{MAP}}(d_v, d_c, L, W) = \varepsilon_{\text{MAP, uncoupl.}}(d_v, d_c)
 \]

Spatially Coupled LDPC Codes are Capacity-Achieving

• Under some conditions, SC-LDPC codes are capacity-achieving [KRU11], in particular, for the decoding threshold on the binary erasure channel (BEC),

\[
\lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{BP}(d_v, d_c, L, W) = \lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{MAP}(d_v, d_c, L, W) = \varepsilon_{MAP, uncoupled}(d_v, d_c)
\]

• Rate of the SC-LDPC code ensemble:

\[
R = \left(1 - \frac{d_v}{d_c}\right) - O(w/L)
\]
Spatially Coupled LDPC Codes are Capacity-Achieving

- Under some conditions, SC-LDPC codes are capacity-achieving [KRU11], in particular, for the decoding threshold on the binary erasure channel (BEC),

 \[\lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{\text{BP}}(d_v, d_c, L, W) = \lim_{w \to \infty} \lim_{L \to \infty} \varepsilon_{\text{MAP}}(d_v, d_c, L, W) = \varepsilon_{\text{MAP, uncoupl.}}(d_v, d_c) \]

- Rate of the SC-LDPC code ensemble: \(R = \left(1 - \frac{d_v}{d_c} \right) - O(w/L) \)

Practical code constructions:

- Keep \(L \) small, as large \(L \) can worsen finite length performance [OU15]
- For small, fixed \(L \), keep \(w \) small to keep rate loss and decoder complexity small
- Performance for small \(w \) not necessarily good
- Modified, generalized ensemble for small \(w \) required

Density Evolution for $\varepsilon = 0.48, \ L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5, \ d_c = 10$

$I = 200$ iter.
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5, d_c = 10$

$I = 400$ iter.
Density Evolution for $\varepsilon = 0.48, \ L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5, \ d_c = 10$

$I = 600$ iter.
Density Evolution for $\epsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 800$ iter.
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 1000$ iter.
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code $d_v = 5$, $d_c = 10$

$I = 1500$ iter.
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code

$d_v = 5$, $d_c = 10$

$I = 1740$ iter.
Windowed Decoding of Spatially Coupled LDPC Codes

Conventional Spatially Coupled LDPC Code
\(d_v = 5, \; d_c = 10 \)

\(I = 200 \) iter.

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size \(W_D \) for this part (decode while receive)
- Window latency of order \(W_D + w (W_D + w - 1) \) SPs in window
- Decoding complexity of order \((W_D + w) \cdot I \) (\(I \): number iterations per window)

Windowed Decoding of Spatially Coupled LDPC Codes

Conventional Spatially Coupled LDPC Code
d_v = 5, d_c = 10

I = 400 iter.

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size \(W_D \) for this part (decode while receive)
- Window latency of order \(W_D + w (W_D + w - 1) \) SPs in window
- Decoding complexity of order \((W_D + w) \cdot I \) (I: number iterations per window)

Windowed Decoding of Spatially Coupled LDPC Codes

Conventional Spatially Coupled LDPC Code
\(d_v = 5, \ d_c = 10 \)

\(I = 600 \) iter.

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size \(W_D \) for this part (decode while receive)
- Window latency of order \(W_D + w (W_D + w - 1) \) SPs in window
- Decoding complexity of order \((W_D + w) \cdot I\) (\(I \): number iterations per window)

Windowed Decoding of Spatially Coupled LDPC Codes

Conventional Spatially Coupled LDPC Code
\(d_v = 5, d_c = 10 \)

\(I = 800 \) iter.

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size \(W_D \) for this part (decode while receive)
- Window latency of order \(W_D + w (W_D + w - 1) \) SPs in window
- Decoding complexity of order \((W_D + w) \cdot I \) (I: number iterations per window)

Windowed Decoding of Spatially Coupled LDPC Codes

- Conventional Spatially Coupled LDPC Code $d_v = 5$, $d_c = 10$
- $I = 1000$ iter.

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order $W_D + w (W_D + w - 1$ SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

Windowed Decoding of Spatially Coupled LDPC Codes

Conventional Spatially Coupled LDPC Code
d_v = 5, d_c = 10

\[I = 1500 \text{ iter.} \]

- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size \(W_D \) for this part (decode while receive)
- Window latency of order \(W_D + w (W_D + w - 1) \) SPs in window
- Decoding complexity of order \((W_D + w) \cdot I \) (\(I \): number iterations per window)

Decoding Velocity and Windowed Decoding

Conventional Spatially Coupled LDPC Code
\[d_v = 5, \ d_c = 10 \]

• Decoding velocity as displacement of erasure profile per decoding iteration
 [AStB13], [EM16]

• Decoding velocity \(v \) defined as \(D/I \), where \(I \) is the number of iterations
 required to advance the profile by \(D \), i.e., here
 \[v = D/200 \]

Decoding Velocity and Windowed Decoding

Conventional Spatially Coupled LDPC Code $d_v = 5$, $d_c = 10$

- Windowed decoding only carries out decoding operations on W_D spatial positions that benefit from decoding [ISU+13]
- Complexity of windowed decoding directly linked to the velocity of the profile

Spatially Coupled Codes for High-Throughput Comms.

- **Staircase codes** [SFH+12] now well established in low-complexity, high-throughput optical communications
- Standardized for interoperable communications
- Very good performance with hard-decision decoding
- Spatially-coupled generalized LDPC codes

- Other high-performing spatially coupled codes have been proposed as well
- Example: **Braided BCH codes** presented in [JPN+13]
- Similar performance than staircase codes
- Extra performance gains by using extrinsic decoder requiring more memory

FPGA-Based Code Evaluation Platform

- **High throughputs & large coding gains** necessary in optical core networks & submarine cables
- **Required BER**: around 0.0000000000001% (10^{-15})
- Maximum 10 bit errors per day at line rate of 100 Gbit/s
- Requirements might become more strict in the future

Virtex-7 based, configurable FPGA emulator platform with windowed decoding
Results of FPGA-Based Code Evaluation ($R = 0.8$)

- Comparison of two different codes
 - Code A: optimized degree dist.
 - Code B: optimized for low floor

Single engine decoder, $I = 1$ iteration of layered decoder [H04]

Results of FPGA-Based Code Evaluation ($R = 0.8$)

• Comparison of two different codes
 • Code A: optimized degree dist.
 • Code B: optimized for low floor

Single engine decoder, $I = 1$ iteration of layered decoder [H04]

Results of FPGA-Based Code Evaluation ($R = 0.8$)

- Comparison of two different codes
 - Code A: optimized degree dist.
 - Code B: optimized for low floor

Single engine decoder, $I = 1$ iteration of layered decoder [H04]

- Block LDPC Code ($d_v = 3$, $d_c = 15$)

No errors observed
NCG 11.91 dB

BER

<table>
<thead>
<tr>
<th>Normalized SNR (dB)</th>
<th>BER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>2.6</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>2.7</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>2.8</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>2.9</td>
<td>10^{-0.5}</td>
</tr>
<tr>
<td>3.0</td>
<td>10^{-0}</td>
</tr>
<tr>
<td>3.1</td>
<td>10^{0}</td>
</tr>
<tr>
<td>3.2</td>
<td>10^{5}</td>
</tr>
</tbody>
</table>

Results of FPGA-Based Code Evaluation ($R = 0.8$)

Hybrid Decoder with two engines

H =

Results of FPGA-Based Code Evaluation ($R = 0.8$)

Hybrid Decoder with two engines

\[H = \begin{bmatrix} H_1 & H_0 \\ H_1 & H_0 \\ H_1 & H_0 \\ H_1 & H_0 \\ H_1 & H_0 \end{bmatrix} \]

- Engine 1
- Engine 2

Results of FPGA-Based Code Evaluation ($R = 0.8$)

- Net coding gain 12.01 dB

Results of FPGA-Based Code Evaluation \((R = 0.8) \)

- **Capacity limit:** 2.06 dB
- **Net coding gain:** 12.01 dB

No errors after \(6.7 \times 10^{15} \) transmitted bits

Graph:
- Block LDPC \((d_v = 3) \)
- SC-LDPC Code A
- SC-LDPC Code B

Diagram:
- Hybrid Decoder with two engines

Equation:
\[
H = \begin{bmatrix}
H_1 & H_0 \\
H_1 & H_0
\end{bmatrix}
\]

Engine 1
- Purple

Engine 2
- Orange

Results of FPGA-Based Code Evaluation ($R = 0.8$)

Engine 1

Engine 2

Hybrid Decoder with two engines

- **0.4dB** correspond to **900km reach increase** in trans-pacific cables
- Optical fiber communication systems age (material, lasers, photodiodes) and the SNR will decay over time
- In this case, additional gains increase lifetime/reduce margins of a system
- **More gains** are possible **with higher decoding complexity**
- However, **we want even more gains!**

New: Non-Uniformly Coupled LDPC Code Ensemble
Spatially Coupled LDPC Code with $w = 2$

Definition

Connect each edge from variable node at SP z to
- check node at position z with probability α and to
- Check node at position $z + 1$ with probability $1 - \alpha$

Non-Uniformly Coupled LDPC Code Ensemble

Literature Review

- Optimized protographs with implicit non-uniform coupling [MLC15]
- Non-uniform protographs for coded modulation with spatially coupled codes [StB13]
- Non-uniform protographs for improved thresholds and unequal error prot. [JB14]
- Exponential, non-uniform coupling for anytime reliability [NNL15]
- Non-uniform coupling in spatially coupled compressed sensing [KMS+12]
- Rate loss mitigation by extra structure at the boundaries [TKS12], [SP16]

Non-Uniformly Coupled LDPC Code Ensemble

BEC Density Evolution and Rate Loss

- BEC Density evolution for the generalized non-uniformly coupled ensemble

\[x_z^{(t+1)} = \varepsilon \left(1 - \sum_{i=0}^{w-1} \nu_i \left(1 - \sum_{j=0}^{w-1} \nu_j x_z^{(t)} \right) \right)^{d_c-1} d_v^{d_v-1} \]

- In particular, for \(w = 2 \), we have \(\nu = (\alpha, 1 - \alpha) \)

- Rate of the generalized ensemble

\[R = \left(1 - \frac{d_v}{d_c} \right) - \frac{d_v}{d_c} \left(w - 1 - \sum_{k=0}^{w-2} \left[\left(\sum_{i=0}^{k} \nu_i \right)^{d_c} + \left(\sum_{i=k+1}^{w-1} \nu_i \right)^{d_c} \right] \right) \]

- For \(w = 2 \), rate is minimal for \(\alpha = 1/2 \), i.e., non-uniform coupling reduces rate loss
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 200$ iter.

New: Non-uniformly coupled code with
$d_v = 5$, $d_c = 10$
Single-side convergence
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 400$ iter.

New: Non-uniformly coupled code with
$d_v = 5$, $d_c = 10$
Single-side convergence
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 600$ iter.

New: Non-uniformly coupled code with $d_v = 5$, $d_c = 10$
Single-side convergence
Density Evolution for $\epsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5, d_c = 10$

$I = 800$ iter.

New: Non-uniformly coupled code with $d_v = 5, d_c = 10$
Single-side convergence
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 1000$ iter.

New: Non-uniformly coupled code with
$d_v = 5$, $d_c = 10$

Single-side convergence
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code

$d_v = 5$, $d_c = 10$

$I = 1500$ iter.

New: Non-uniformly coupled code with $d_v = 5$, $d_c = 10$

Single-side convergence
Density Evolution for $\varepsilon = 0.48$, $L = 50$

Conventional Spatially Coupled LDPC Code
$d_v = 5$, $d_c = 10$

$I = 1740$ iter.

New: Non-uniformly coupled code with
$d_v = 5$, $d_c = 10$
Single-side convergence

Less iterations required for full convergence!
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100)\) over the BEC
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100) \) over the BEC

![Diagram showing the comparison between no coupling and uniform coupling for different values of \(d_v \).]
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100) \) over the BEC

<table>
<thead>
<tr>
<th>(d_v)</th>
<th>(\alpha^*)</th>
<th>(\epsilon_{BP \text{ uncoupled}})</th>
<th>(\epsilon_{MAP})</th>
<th>(\epsilon_{BP}(\alpha = 0.5))</th>
<th>(\epsilon_{BP}(\alpha^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4517</td>
<td>0.4294</td>
<td>0.48815</td>
<td>0.488(8)</td>
<td>0.4881(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.4017</td>
<td>0.3834</td>
<td>0.49774</td>
<td>0.4944</td>
<td>0.4976</td>
</tr>
<tr>
<td>5</td>
<td>0.359</td>
<td>0.3415</td>
<td>0.49949</td>
<td>0.4827</td>
<td>0.4989</td>
</tr>
<tr>
<td>6</td>
<td>0.3252</td>
<td>0.3075</td>
<td>0.49988</td>
<td>0.4603</td>
<td>0.4979</td>
</tr>
<tr>
<td>7</td>
<td>0.2978</td>
<td>0.2798</td>
<td>0.49997</td>
<td>0.4338</td>
<td>0.4965</td>
</tr>
<tr>
<td>8</td>
<td>0.2745</td>
<td>0.257</td>
<td>0.49999</td>
<td>0.4074</td>
<td>0.4953</td>
</tr>
<tr>
<td>9</td>
<td>0.2544</td>
<td>0.2378</td>
<td>0.49999</td>
<td>0.3829</td>
<td>0.4943</td>
</tr>
<tr>
<td>10</td>
<td>0.2368</td>
<td>0.2215</td>
<td>0.49999</td>
<td>0.3606</td>
<td>0.4936</td>
</tr>
</tbody>
</table>
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100) \) over the BEC

<table>
<thead>
<tr>
<th>(d_v)</th>
<th>(\alpha^*)</th>
<th>(\epsilon_{BP \text{ uncoupled}})</th>
<th>(\epsilon_{MAP})</th>
<th>(\epsilon_{BP}(\alpha = 0.5))</th>
<th>(\epsilon_{BP}(\alpha^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4517</td>
<td>0.4294</td>
<td>0.48815</td>
<td>0.488(8)</td>
<td>0.4881(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.4017</td>
<td>0.3834</td>
<td>0.49774</td>
<td>0.4944</td>
<td>0.4976</td>
</tr>
<tr>
<td>5</td>
<td>0.359</td>
<td>0.3415</td>
<td>0.49949</td>
<td>0.4827</td>
<td>0.4989</td>
</tr>
<tr>
<td>6</td>
<td>0.3252</td>
<td>0.3075</td>
<td>0.49988</td>
<td>0.4603</td>
<td>0.4979</td>
</tr>
<tr>
<td>7</td>
<td>0.2978</td>
<td>0.2798</td>
<td>0.49997</td>
<td>0.4338</td>
<td>0.4965</td>
</tr>
<tr>
<td>8</td>
<td>0.2745</td>
<td>0.257</td>
<td>0.49999</td>
<td>0.4074</td>
<td>0.4953</td>
</tr>
<tr>
<td>9</td>
<td>0.2544</td>
<td>0.2378</td>
<td>0.49999</td>
<td>0.3829</td>
<td>0.4943</td>
</tr>
<tr>
<td>10</td>
<td>0.2368</td>
<td>0.2215</td>
<td>0.49999</td>
<td>0.3606</td>
<td>0.4936</td>
</tr>
</tbody>
</table>

Increasing
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100) \) over the BEC

<table>
<thead>
<tr>
<th>(d_v)</th>
<th>(\alpha^*)</th>
<th>(\epsilon_{BP, \text{uncoupled}})</th>
<th>(\epsilon_{MAP})</th>
<th>(\epsilon_{BP}(\alpha = 0.5))</th>
<th>(\epsilon_{BP}(\alpha^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4517</td>
<td>0.4294</td>
<td>0.48815</td>
<td>0.488(8)</td>
<td>0.4881(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.4017</td>
<td>0.3834</td>
<td>0.49774</td>
<td>0.4944</td>
<td>0.4976</td>
</tr>
<tr>
<td>5</td>
<td>0.359</td>
<td>0.3415</td>
<td>0.49949</td>
<td>0.4827</td>
<td>0.4989</td>
</tr>
<tr>
<td>6</td>
<td>0.3252</td>
<td>0.3075</td>
<td>0.49988</td>
<td>0.4603</td>
<td>0.4979</td>
</tr>
<tr>
<td>7</td>
<td>0.2978</td>
<td>0.2798</td>
<td>0.49997</td>
<td>0.4338</td>
<td>0.4965</td>
</tr>
<tr>
<td>8</td>
<td>0.2745</td>
<td>0.257</td>
<td>0.49999</td>
<td>0.4074</td>
<td>0.4953</td>
</tr>
<tr>
<td>9</td>
<td>0.2544</td>
<td>0.2378</td>
<td>0.49999</td>
<td>0.3829</td>
<td>0.4943</td>
</tr>
<tr>
<td>10</td>
<td>0.2368</td>
<td>0.2215</td>
<td>0.49999</td>
<td>0.3606</td>
<td>0.4936</td>
</tr>
</tbody>
</table>

Increasing \(\alpha^*\): \(\epsilon_{BP, \text{uncoupled}}\) decreases, \(\epsilon_{MAP}\) increases.

Decreasing \(\alpha^*\): \(\epsilon_{BP}(\alpha = 0.5)\) decreases, \(\epsilon_{BP}(\alpha^*)\) increases.
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100)\) over the BEC

<table>
<thead>
<tr>
<th>(d_v)</th>
<th>(\alpha^*)</th>
<th>(\epsilon_{BP}) uncoupled</th>
<th>(\epsilon_{MAP})</th>
<th>(\epsilon_{BP}(\alpha = 0.5))</th>
<th>(\epsilon_{BP}(\alpha^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4517</td>
<td>0.4294</td>
<td>0.48815</td>
<td>0.488(8)</td>
<td>0.4881(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.4017</td>
<td>0.3834</td>
<td>0.49774</td>
<td>0.4944</td>
<td>0.4976</td>
</tr>
<tr>
<td>5</td>
<td>0.359</td>
<td>0.3415</td>
<td>0.49949</td>
<td>0.4827</td>
<td>0.4989</td>
</tr>
<tr>
<td>6</td>
<td>0.3252</td>
<td>0.3075</td>
<td>0.49988</td>
<td>0.4603</td>
<td>0.4979</td>
</tr>
<tr>
<td>7</td>
<td>0.2978</td>
<td>0.2798</td>
<td>0.49997</td>
<td>0.4338</td>
<td>0.4965</td>
</tr>
<tr>
<td>8</td>
<td>0.2745</td>
<td>0.257</td>
<td>0.49999</td>
<td>0.4074</td>
<td>0.4953</td>
</tr>
<tr>
<td>9</td>
<td>0.2544</td>
<td>0.2378</td>
<td>0.49999</td>
<td>0.3829</td>
<td>0.4943</td>
</tr>
<tr>
<td>10</td>
<td>0.2368</td>
<td>0.2215</td>
<td>0.49999</td>
<td>0.3606</td>
<td>0.4936</td>
</tr>
</tbody>
</table>

Increasing: \(\epsilon_{BP}\) uncoupled, \(\epsilon_{MAP}\), \(\epsilon_{BP}(\alpha = 0.5)\), \(\epsilon_{BP}(\alpha^*)\)

Decreasing: \(\alpha^*\)

Almost unchanged: \(\epsilon_{BP}\) uncoupled

Increasing: \(\epsilon_{BP}\) uncoupled, \(\epsilon_{MAP}\), \(\epsilon_{BP}(\alpha = 0.5)\), \(\epsilon_{BP}(\alpha^*)\)

Decreasing: \(\alpha^*\)

Almost unchanged: \(\epsilon_{BP}\) uncoupled
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

BP decoding thresholds: SC-LDPC \((d_v, 2d_v, w = 2, \alpha, L = 100)\) over the BEC

<table>
<thead>
<tr>
<th>(d_v)</th>
<th>(\alpha^*)</th>
<th>(\varepsilon_{BP}) uncoupled</th>
<th>(\varepsilon_{MAP})</th>
<th>(\varepsilon_{BP}(\alpha = 0.5))</th>
<th>(\varepsilon_{BP}(\alpha^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4517</td>
<td>0.4294</td>
<td>0.48815</td>
<td>0.488(8)</td>
<td>0.4881(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.4017</td>
<td>0.3834</td>
<td>0.49774</td>
<td>0.4944</td>
<td>0.4976</td>
</tr>
<tr>
<td>5</td>
<td>0.359</td>
<td>0.3415</td>
<td>0.49949</td>
<td>0.4827</td>
<td>0.4989</td>
</tr>
<tr>
<td>6</td>
<td>0.3252</td>
<td>0.3075</td>
<td>0.49988</td>
<td>0.4603</td>
<td>0.4979</td>
</tr>
<tr>
<td>7</td>
<td>0.2978</td>
<td>0.2798</td>
<td>0.49997</td>
<td>0.4338</td>
<td>0.4965</td>
</tr>
<tr>
<td>8</td>
<td>0.2745</td>
<td>0.257</td>
<td>0.49999</td>
<td>0.4074</td>
<td>0.4953</td>
</tr>
<tr>
<td>9</td>
<td>0.2544</td>
<td>0.2378</td>
<td>0.49999</td>
<td>0.3829</td>
<td>0.4943</td>
</tr>
<tr>
<td>10</td>
<td>0.2368</td>
<td>0.2215</td>
<td>0.49999</td>
<td>0.3606</td>
<td>0.4936</td>
</tr>
</tbody>
</table>
Non-Uniform Coupling vs. Conventional Uniform Coupling (2)

Complexity of Decoding (i.e., Number of Iterations)

Decoding speed contour plots for the random SC-LDPC\((d_v, 2d_v, w = 2, \alpha, L = 100) \) ensemble.

Uniform coupling
Non-Uniform Coupling vs. Conventional Uniform Coupling (2)

Complexity of Decoding (i.e., Number of Iterations)

Decoding speed contour plots for the random SC-LDPC($d_v, 2d_v, w = 2, \alpha, L = 100$) ensemble.

Uniform coupling
Non-Uniform Coupling vs. Conventional Uniform Coupling (2)

Complexity of Decoding (i.e., Number of Iterations)

Decoding speed contour plots for the random SC-LDPC(d_v, $2d_v$, $w = 2$, α, $L = 100$) ensemble.

Uniform coupling
Non-Uniform Coupling vs. Conventional Uniform Coupling (2)

Complexity of Decoding (i.e., Number of Iterations)

Decoding speed contour plots for the random SC-LDPC\((d_v, 2d_v, w = 2, \alpha, L = 100)\) ensemble.

Same velocity with higher variable node degree \(\rightarrow\) lower error floors

Uniform coupling
What Happens with Optimized SC-LDPC Codes ($R = 0.8$)

- FPGA simulation results of QC versions of these codes
- Degraded performance of optimized, unequally coupled codes under windowed decoding [SSA+16]
- Performance does not correspond to predicted threshold
- What is happening?

Windowed Decoder Stall
Exemplary Error Patterns AFTER Decoding

- In rare cases, decoder gets stuck
- Subsequent spatial positions are also stuck
- *Burst-like error pattern*
Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position.
- Decoder gets stuck around $p_{\text{win}} = 37$.
- Leftmost position(s) needs to be error-free before decoding.

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

\[p_{\text{win}} \in (1,N_W) \] denotes the window position

• Decoder gets stuck around \(p_{\text{win}} = 37 \)

• Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

\[\cdot 10^{-2} \]

\[\begin{array}{c|c|c|c|c|c|c|c} \hline
\text{BER} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\text{Spatial position within decoding window} & & & & & & & \\
\hline
\end{array} \]

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Observations Inside the Decoding Window

- $p_{\text{win}} \in (1, N_W)$ denotes the window position
- Decoder gets stuck around $p_{\text{win}} = 37$
- Leftmost position(s) needs to be error-free before decoding

Decoding Window Loses Track of Decoding Wave

With probability p_B, a burst-situation occurs in a codeword

Decoding Window Loses Track of Decoding Wave

- Estimated p_B for the codes used in previous simulation:

<table>
<thead>
<tr>
<th>E_b/N_0 (dB)</th>
<th>p_B for $L = 24$</th>
<th>p_B for $L = 99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.84</td>
<td>$1.0 \cdot 10^{-3}$</td>
<td>$5.6 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>2.87</td>
<td>$1.6 \cdot 10^{-4}$</td>
<td>$6.3 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>2.90</td>
<td>$2.0 \cdot 10^{-5}$</td>
<td>$8.9 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>2.93</td>
<td>$3.2 \cdot 10^{-6}$</td>
<td>$1.3 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

With probability p_B, a burst-situation occurs in a codeword.

- With probability p_B, residual errors occur.

References:

Stall Prediction

• **Solution 1**: Increase number of decoding operations
 • Will increase complexity, hence not recommended in high-throughput cases

Stall Prediction

• **Solution 1**: Increase number of decoding operations
 • Will increase complexity, hence not recommended in high-throughput cases
• **Idea 2**: *Foresightful* Stall Prediction
 • Only increase number of iterations when needed
 • Prediction on channel output of current SP not easily possible
 • Current SP may lead to a stall few W_D positions away
 • See [KCS+18] for details and examples of cases where this doesn’t work

Stall Prediction

• **Solution 1**: Increase number of decoding operations
 • Will increase complexity, hence not recommended in high-throughput cases

• **Idea 2**: *Foresightful* Stall Prediction
 • Only increase number of iterations when needed
 • Prediction on channel output of current SP not easily possible
 • Current SP may lead to a stall few \(W_D \) positions away
 • See [KCS+18] for details and examples of cases where this doesn’t work

• **Idea 3**: *Stall Detection*
 • React when stall is about to happen

Decoder Stall Detection

Decoder stall detection

- **Variant A**: Stall detection based on fulfilled parity checks (HD)
- **Variant B**: Stall detection based on estimated BER (SD)
 - Estimate BER within SP inside windowed decoder as \[\text{[HIS00]} \]
 \[\text{BER}_i = \frac{1}{M} \sum_{k=1}^{M} \frac{1}{1 + \exp(|L_{i,k}|)} \]
 - Use \(\text{BER}_i \) thresholds to estimate position of wave inside decoder
 - React by carrying out more iterations or shifting window (Strat. A, B, C)

Strategy A - Adaptive Iterations Decoder

- Stall detected: Increase number of iterations
- No stall present: Shift window after minimum number of iterations
Strategy A - Adaptive Iterations Decoder

- Stall detected: Increase number of iterations
- No stall present: Shift window after minimum number of iterations
Strategy A - Adaptive Iterations Decoder

- Stall detected: Increase number of iterations
- No stall present: Shift window after minimum number of iterations
Strategy A - Adaptive Iterations Decoder

- Stall detected: Increase number of iterations
- No stall present: Shift window after minimum number of iterations
Strategy B – Window Shift Decoder

- Stall detected: Shift window backwards
- After I iterations, continue with next window
- No stall prediction needed
Strategy B – Window Shift Decoder

- Stall detected: Shift window backwards
- After I iterations, continue with next window
- No stall prediction needed
Strategy B – Window Shift Decoder

- Stall detected: Shift window backwards
- After I iterations, continue with next window
- No stall prediction needed
Strategy C – Wave Tracking Decoder

- Stall detected: Shift window backwards
- Shift window forward based on position of decoding wave
Strategy C – Wave Tracking Decoder

- Stall detected: Shift window backwards
- Shift window forward based on position of decoding wave
Strategy C – Wave Tracking Decoder

- Stall detected: Shift window backwards
- Shift window forward based on position of decoding wave
Strategy C – Wave Tracking Decoder

- Stall detected: Shift window backwards
- Shift window forward based on position of decoding wave
Simulation Results

- Average decoding complexity \overline{C}: average number of iterations per spatial position
- Code rate $R = 0.8$

Simulation Results

- Average decoding complexity \bar{C}: average number of iterations per spatial position
- Code rate $R = 0.8$

Simulation Results

- Average decoding complexity \bar{C}: average number of iterations per spatial position
- Code rate $R = 0.8$

- Adaptive shifting can be implemented using some simple buffering and control [SL14]

Conclusions & Outlook

• For small, finite coupling width w, non-uniform coupling improves
 • Decoding threshold
 • Rate loss
 • Decoding velocity, leading to low-complexity, high throughput decoders
Conclusions & Outlook

• For small, finite coupling width w, non-uniform coupling improves
 • Decoding threshold
 • Rate loss
 • Decoding velocity, leading to low-complexity, high throughput decoders
• Decoding non-uniformly coupled LDPC codes leads to **decoder stalls**
 • Depend on replication factor (but small repl. factor leads to rate loss)
Conclusions & Outlook

- For small, finite coupling width w, non-uniform coupling improves
 - Decoding threshold
 - Rate loss
 - Decoding velocity, leading to low-complexity, high throughput decoders
- Decoding non-uniformly coupled LDPC codes leads to **decoder stalls**
 - Depend on replication factor (but small repl. factor leads to rate loss)
 - **Mitigate by design**: design codes where different between MAP threshold and BP threshold of underlying baseline code is small
 - Not clear yet if we can get maximum possible gain and low error floors
Conclusions & Outlook

• For small, finite coupling width w, non-uniform coupling improves
 • Decoding threshold
 • Rate loss
 • Decoding velocity, leading to low-complexity, high throughput decoders
• Decoding non-uniformly coupled LDPC codes leads to **decoder stalls**
 • Depend on replication factor (but small repl. factor leads to rate loss)
 • **Mitigate by design**: design codes where different between MAP threshold and BP threshold of underlying baseline code is small
 • Not clear yet if we can get maximum possible gain and low error floors
 • **Mitigate by decode**: track the decoding wave and use some adaptivity
Conclusions & Outlook

- For small, finite coupling width w, non-uniform coupling improves
 - Decoding threshold
 - Rate loss
 - Decoding velocity, leading to low-complexity, high throughput decoders
- Decoding non-uniformly coupled LDPC codes leads to **decoder stalls**
 - Depend on replication factor (but small repl. factor leads to rate loss)
 - **Mitigate by design**: design codes where different between MAP threshold and BP threshold of underlying baseline code is small
 - Not clear yet if we can get maximum possible gain and low error floors
 - **Mitigate by decode**: track the decoding wave and use some adaptivity
- Feasible coding scheme promising additional gains, but need HW architectures
Comparison of Coding Schemes in Optical Communications

- State-of-the-art FEC schemes proposed for practical implementation
- Performance verified or reasonably estimated at 10^{-15} BER
Comparison of Coding Schemes in Optical Communications

- State-of-the-art FEC schemes proposed for practical implementation
- Performance verified or reasonably estimated at 10^{-15} BER
- The best performing schemes are spatially coupled codes
The Bell Labs Prize 2019

Human experience transforming ideas grown here

Earn the recognition your ideas deserve.
The Bell Labs Prize isn’t just about the money. It’s also about the journey. Present your world-shifting ideas to the leading scientists in their field. Refine your pitch so it catches the attention of CEOs and Nobel Prize winners.

The competition submission deadline is April 26, 2019!
To apply, visit the Bell Labs website at www.bell-labs.com/prize

NOKIA Bell Labs