Persönlicher Status und Werkzeuge

Bernhard Geiger

Bernhard Geiger

Bernhard Geiger
Senior Researcher

Institute for Communications Engineering
Theresienstrasse 90
Building N4, 3. Floor
D-80333 Munich

Room: N3409
Phone: +49 89 289-23452
Email: bernhard.geigernoSpamAllowed@tum.de

Biography

I was born in Graz, Austria, in April 1984, where I studied Electrical Engineering with focus on Communications between 2004 and 2009 at Graz University of Technology. After receiving my Dipl.-Ing. in November 2009, I joined the Signal Processing and Speech Communication Lab (SPSC) as a project assistant, working on a software-defined GPS receiver. In 2010 I started my PhD thesis, taking a position as a research & teaching associate in the lab. After graduating in June 2014, I joined the Institute of Communications Engineering in November 2014.

My h-factor (as of August 2015) is 5 (excluding self citations). My Erdös number is 3, thanks to a joint "publication" with Wolfgang Woess in the Research News of Graz University of Technology.

In my leisure time (or during the commute to and from work) I enjoy reading a good book. My other hobbies are running, Geocaching, and playing Go (~15 kyu; you can challenge me - sliver1984 - at DGS).

Research

Already during my PhD, in which I investigated the information loss in deterministic systems, I became increasingly interested in state space reduction for Markov chains. Based on a results obtained together various collaborators (Christoph Temmel, Tatjana Petrov, Heinz Koeppl), during the next few years I would like to continue deveoping information-theoretic methods for state space reduction for Markov and hidden Markov models.

Links

For my most recent publications, please take a look at 

My PhD thesis can be downloaded from the EURASIP database.

If you are interested in my teaching experience, you can either visit my old website at the SPSC Lab (incomplete) or request a detailled CV!

Theses in Progress


Kairen Liu: Master Thesis - Information Theoretic Analysis of Neural Networks
Various types of neural networks have gained a lot of attention in recent years and have found numerous practical applications with impressive results. Albeit their success, their behaviour is not very well understood mathematically. The aim of this thesis is to approach the topic from an information theoretic perspective and see if one can use insight from information and coding theory to analyze/design neural networks for specific applications.
Supervisors: Rana Ali Amjad, Bernhard Geiger

Muhammad Firas Hammosh: Forschungspraxis (12 ECTS) - Is Online PCA Information-Preserving?
In this research internship, and overview over existing online (i.e., iterative, recursive, etc.) algorithms for Prinicipal Components Analysis (PCA) should be given. We try to find our which (if any) of these algorithms is invertible in the sense that one can reconstruct the original data from only looking at the rotated data. For those algorithms for which this is not possible, the (relative) information loss should be computed.
This work thus builds the bridge between PCA given knowledge of the covariance matrix (given-statistics) and PCA given only the sample covariance matrix (given-data). While no information is lost in the former, the information loss in the latter was shown to be substantial. We believe that the information loss of online PCA lies somewhere in between.
Supervisors: Bernhard Geiger

Emna Ben Yacoub: Forschungspraxis (12 ECTS) - M-Type Approximation of Hidden Markov Models
In this research project, we replace transition and observation probability matrices of hidden Markov models (HMMs) by matrices where each entry is an integer multiple of integer M (i.e., is "M-type"). The problem is an immediate extension of approximating finite-length probability vectors by M-type vectors.

The Viterbi algorithm can be used to infer the state sequence from the observation sequence, given that the algorithm has knowledge of the transition and observation matrices. If, instead of the true matrices, the algorithm has knowledge only of their M-type approximations, this will lead to an increase in error probability. We try to find a connection between a probabilistic divergence measure between the true and the M-type model (e.g., Kullback-Leibler divergence rate, matrix norms, etc.) and this increase in error probability.
Supervisors: Bernhard Geiger, Rana Ali Amjad

Publications

2017

2016

2015

2014